

Contents lists available at ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4

Nian Tang, Yue Liu, Haiqiang Wang, Ling Xiao, Zhongbiao Wu*

Department of Environmental Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, Zhejiang, China

ARTICLE INFO

Article history: Received 1 January 2010 Received in revised form 11 March 2010 Accepted 11 March 2010

Keywords: Nitrogen dioxide Absorption Calcium sulfite Additive Magnesium sulfate

1. Introduction

The emission of NOx remains one of the major environmental concerns because they are associated with acid deposition, photochemical smog and ozone depletion. Wet scrubbing process promises to be less expensive than other techniques for NOx removal, such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and combustion modification [1]. However, the main component (85–95%) of NOx in flue gases is NO, which is of low solubility and reactivity. Thus, it is necessary to oxidize NO to NO₂ before scrubbing [2]. Consequently, many oxidation–absorption combined processes have been studied extensively [2–4].

A variety of methods have been developed for NO oxidation, including strong oxidizing agent injection (e.g., ozone, hydrogen peroxide and chlorine dioxide) [2,5–7], selective catalytic oxidation [8,9], photocatalytic oxidation [3,10,11], and so on. As for the subsequent absorption process, many absorbents (such as water, acid solutions, basic solutions and reducing agents) have been investigated [12–16]. Among them, reducing absorbents including Na₂SO₃ and Na₂S seem to be most effective and have garnered extensive attentions. However, large extra consumption of these reducing absorbents usually occurs inevitably due to the presence of oxygen in flue gas [2,16–18]. Considering their high prices, the operation costs would be too high for practical use. It is still necessary to seek a more cost-effective absorbent for NO₂ absorption.

ABSTRACT

In this study, CaSO₃, the by-product of flue gas desulfurization (FGD) process, was used as an absorbent for NO₂ absorption. As the CaSO₃ content exceeded 0.1 mol L⁻¹, the absorption efficiency of NO₂ could reach more than 70%. Three types of additives, MgSO₄, Na₂SO₄ and MgCl₂, were also investigated for the enhancement of NO₂ absorption, and it was found that MgSO₄ was the most effective. When MgSO₄ was added, the NO₂ absorption efficiency could increase significantly from 70.8% to 86.0%, and the oxidation rate of CaSO₃ became around 10 times higher than that of additive free condition. Furthermore, the addition of MgSO₄ would also lead to the raise in the ratio of NO₂⁻² to the total NO₂ absorption products. All these aspects could be ascribed to the increment of the capacity of dissolved sulfite species (CDSS) which resulted from the combined effects of SO₄²⁻ and Mg²⁺. Firstly, SO₄²⁻ would react with Ca²⁺ and promote the dissolution of CaSO₃, resulting in the increase of CDSS. And then the neutral MgSO₃⁰ ion pair would form in the absorbent slurry, which could play the same role as dissociated SO₃²⁻ in the NO₂ absorption.

© 2010 Elsevier B.V. All rights reserved.

In the traditional wet calcium-based flue gas desulfurization (FGD) processes, another kind of sulfite, $CaSO_3$, is produced in a considerable amount. $CaSO_3$ might be a suitable NO_2 absorbent potentially, since SO_3^{2-} is also dissociated in its slurry. At the same time, NO_2 could promote the oxidation of $CaSO_3$, thereby reducing the volume of the hold tank of FGD absorption tower [16]. In this case, NO_2 absorption and $CaSO_3$ oxidation will be complementary to each other and then desulfurization and denitrification processes will be combined reasonably.

Unfortunately, the low solubility of $CaSO_3$ will limit the NO_2 absorption efficiency. Therefore it is meaningful to promote the dissolution of $CaSO_3$. MgSO₄ has been used as an effective additive in wet FGD process, since it can promote the sulfite dissolution significantly and improve the mass transfer of limestone slurries [19,20]. Similarly, the addition of MgSO₄ in CaSO₃ slurry may also enhance the NO₂ absorption.

To the best of our knowledge, absorption of NO₂ in CaSO₃ slurry has not yet been studied directly in the literatures. In this study, the performance of CaSO₃ slurry for NO₂ absorption in a packed column was investigated. Here, MgSO₄ was employed as an additive to enhance the absorption process. Its effects on the NO₂ absorption efficiency, CaSO₃ oxidation and absorption product composition were discussed.

2. Experimental

The schematic diagram of experimental setup is shown in Fig. 1. It consisted of a laboratory-scale packed column, a gas supply system, a solution recycle system and an analytical system. All the

^{*} Corresponding author. Tel.: +86 571 87953088; fax: +86 571 87953088. *E-mail address:* zbwu@zju.edu.cn (Z. Wu).

^{1385-8947/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2010.03.022

Nomenclature							
CDSS	the capacity of dissolved sulfite species (mmol L^{-1})						
OR	the mole ratio of NO_2 to total NOx						
(SO_3^{2-})	concentration of sulfite ion (mol L ⁻¹)						
(SO_4^{2-})	D_4^{2-}) concentration of sulfate ion (mol L ⁻¹)						
K _{sp,CaSO}	the	solubility	product	of	CaSO ₃		
$(3.1 \times 10^{-7} \text{ mol}^2 \text{ L}^{-2}, 25 ^{\circ}\text{C})$							
K _{SD.CaSO}	the	solubility	product	of	CaSO ₄		
	(2.3 × 1	0^{-5} mol ² L ⁻² , 2	25 °C)				

absorption experiments were conducted in a continuous countercurrent manner and under isothermal conditions. The inside diameter and the height of the glass packed column were 35 and 480 mm, respectively. Glass-spring packings of $3.5 \text{ mm} \times 15 \text{ mm}$ were placed randomly inside the glass column. The N₂, NO, NO₂ and O₂ gas streams mixed in the mixing bottle were introduced into the bottom of the column. The absorption slurry stored in the circulation tank was pumped up to the top of the packed column by a peristaltic circulating pump (Baoding Longer Precision Pump Co. Ltd., BT01-100). During each experiment, the inlet gas flow rate and the liquid flow rate were kept unchanged. The temperature in the column was controlled at 25 °C by a jacket. The basic operating conditions for all the experiments are shown in Table 1.

A chemiluminescence NO–NO₂–NOx analyzer (Thermo Environmental Instruments 42i-HL) was used to analyze the concentrations of NOx (NO and NO₂) in gas phase. The concentration of dissolved sulfite species in the slurry was determined by iodometric titration. After the absorption of NO₂ for 100 min, the slurry was withdrawn from circulation tank and divided into two parts: one was used to measure the sulfite oxidation rate also by iodometric method, and the other part was filtered. The concentrations of nitrite and nitrate in the filtrate were determined by an ion chromatograph (Dionex DX-80), and the filter cake was dried at 105 °C for 4 h in an oven (in N₂ atmosphere) and then analyzed by X-ray diffractometer (Rigaku D/MAX-RA).

1.Gas cylinders2.Mass flow meters3.Mixing bottle4.Packed column5.Circulation tank6.Pump7. pH meter8.NOx analyzer

Fig. 1. Schematic diagram of the experimental setup.

Tal	ble	1
		_

Operating conditions maintained in this work.

Property	Value
Working temperature	25 °C
pH value of liquid	8
Inlet gas flow rate	5 L min ⁻¹
Liquid flow rate	5 L h ⁻¹
Residence time of gas	4 s
Residence time of liquid	30 s
O ₂ concentration	3%
Inlet concentration of NOx	600 ppm
Total pressure	$100\pm1kPa$

3. Results and discussion

3.1. Performance of CaSO₃ for NO₂ absorption

The performances of CaSO₃ slurry for the NOx absorption compared with that of water and aqueous Na₂SO₃ solution are shown in Fig. 2. All the experiments were carried out under the same conditions except for the absorbents, and the contents of CaSO₃ and Na₂SO₃ were both 0.1 mol L⁻¹. The OR was defined as the mole ratio of NO₂ to total NOx. From Fig. 2, it could be seen that the absorption efficiency of NOx increased with OR for all these absorbents, because NO₂ is much more soluble and reactive than NO both in water and sulfite solutions, which was in agreement with the conclusion drawn by Takeuchi et al. [13]. The overall reaction between NO₂ and SO₃^{2–} could be described as [14]:

$$2NO_2 + SO_3^{2-} + H_2O \rightarrow 2NO_2^{-} + SO_4^{2-} + 2H^+$$
(1)

and the hydrolysis of NO2 could be represented by

$$2NO_2 + H_2O \rightarrow NO_2^- + NO_3^- + 2H^+$$
(2)

NO₂ would be absorbed via reactions (1) and (2) parallelly in sulfite solution. As suggested by Fig. 2, CaSO₃ slurry was a promising absorbent and an absorption efficiency of NOx above 70% was obtained when OR = 1. It was much more effective than water, with which the highest efficiency was below 50%. Thus the sulfite species in CaSO₃ slurry could contribute to the absorption improvement. However, CaSO₃ slurry was less effective than Na₂SO₃ solution, and the latter could absorb NO₂ nearly completely when OR = 1. This could be ascribed to the difference in their solubilities, for Na₂SO₃ was much more soluble than CaSO₃. Since NO₂ was the predominant species in NOx being absorbed, all the following experiments were carried out with OR = 1.

The effect of $CaSO_3$ content on NO_2 absorption was also investigated, and the experimental results and fitting curve are shown

Fig. 2. Performances of different absorbents for NOx absorption. Experimental conditions: inlet concentration of NOx = 600 ppm; contents of Na₂SO₃ and CaSO₃ = $0.1 \text{ mol } L^{-1}$; pH values of Na₂SO₃ and CaSO₃ = 8.

Fig. 3. The effect of absorbent content on the NO₂ absorption. Experimental conditions: inlet concentration of NO₂ = 600 ppm (OR = 1); pH value of liquid = 8.

in Fig. 3. It could be seen that the absorption efficiency increased gradually from 55.9% to 70.8% as the CaSO₃ content increased from 2 mmol L⁻¹ to 0.1 mol L⁻¹. According to the solubility constant given by Bronikowska et al. [21], the concentration of dissolved SO_3^{2-} in CaSO₃ slurry was about 0.56 mmol L⁻¹, which could not change significantly with CaSO₃ content. Therefore, the efficiency promotion could not be ascribed to the increase of SO₃²⁻ concentration. According to the research of Uchida et al. [22], gas absorption rate in a slurry containing fine particles of absorbent was considerably higher than the rate in a saturated solution without solid component, and the absorption rate would increase with solid content within a certain range. Since there were many absorbent particles suspending in the CaSO₃ slurry, their participation in the absorption process could explain the promotion of NO₂ absorption reasonably. As shown in Fig. 3, when the CaSO₃ content exceeded 0.1 mol L⁻¹, the efficiency would not change obviously further. Accordingly, it might be feasible to use the FGD slurry to remove NO₂ and SO₂ simultaneously, since calcium-based FGD slurry contains some amount of CaSO₃. However, the absorption efficiency would still be limited by its low solubility, so it was still necessary to make efforts to enhance the absorption process.

It was reported by Takeuchi et al. [13] that the reaction between NO₂ and SO₃^{2–} was first order with respect to SO₃^{2–}, so its concentration might play an important role in the absorption process. Therefore, the effect of Na₂SO₃ concentration on NO₂ absorption was also studied. The experimental results and fitting curve are shown in Fig. 3. It was indicated that the effect of the Na₂SO₃ concentration on NO₂ absorption was much more significant than that of CaSO₃. As its concentration increased to 30 mmol L⁻¹, the NO₂ absorption increased sharply to nearly 100%, which was similar to the experimental results in the literature [3]. Thus the promotion of the dissolved SO₃^{2–} in CaSO₃ slurry might be useful to accelerate the NO₂ absorption.

3.2. Effect of $MgSO_4$ on the absorption of NO_2

In the following experiments, MgSO₄ was employed as an additive into 0.1 mol L⁻¹ CaSO₃ slurry. Its effect on the NO₂ absorption was investigated and compared with that of Na₂SO₄ and MgCl₂, as shown in Fig. 4. The experimental results indicated that all the three additives could enhance the NO₂ absorption, and the efficiency increased with their concentrations. When the concentrations of MgSO₄, Na₂SO₄ and MgCl₂ increased from 0 to 0.6 mol L⁻¹, the NO₂ absorption efficiencies were enhanced from 70.8% to 86.0%, 80.0% and 78.0%, respectively. From the results shown in Fig. 4, it could be concluded that MgSO₄ was the most efficient one among the three additives employed.

Fig. 4. The effect of additive concentration on the absorption of NO₂. Experimental conditions: inlet concentration of NO₂ = 600 ppm (OR = 1); CaSO₃ content = 0.1 mol L^{-1} ; pH value of liquid = 8.

In Fig. 5, iodometric titrations of the supernatants separated from CaSO₃ slurries with or without additives are compared. The titration value represented the capacity of dissolved sulfite species, which was denoted by CDSS hereinafter. The results showed that all the additives promoted the CDSS of CaSO₃ slurry significantly, and that CDSS increased with the additive concentrations. MgSO₄ also appeared to be the most effective in CDSS promotion. The CDSS of CaSO₃ slurry without additive was determined to be only 0.49 mmol L⁻¹. With 0.6 mol L⁻¹ MgCl₂ and Na₂SO₄ added, the CDSS was promoted to 4.80 and 5.75 mmol L⁻¹, respectively. While 0.6 mol L⁻¹ MgSO₄ was used, the CDSS increased remarkably to 9.69 mmol L⁻¹.

 SO_3^{2-} ion is one of the major reducing components of CDSS in CaSO₃ slurry. As stated above, the dissociated SO_3^{2-} concentration was very low in the CaSO₃ slurry without promoting agent. When SO_4^{2-} was present, it could promote the concentration of dissociated SO_3^{2-} according to the following equations:

$$CaSO_3 \leftrightarrow Ca^{2+} + SO_3^{2-} \tag{3}$$

$$Ca^{2+} + SO_4^2 \leftrightarrow CaSO_4 \tag{4}$$

The relationship between the concentrations of SO_3^{2-} and SO_4^{2-} could be obtained from the solubility products of CaSO₃ and CaSO₄ [19]:

$$(SO_3^{2-}) = (SO_4^{2-}) \cdot \frac{K_{sp,CaSO_3}}{K_{sp,CaSO_4}}$$
(5)

Fig. 5. The relationship between additive concentration and CDSS. Experimental conditions: $CaSO_3$ content = 0.1 mol L⁻¹; pH value of liquid = 8.

Fig. 6. The effect of CDSS on the absorption of NO₂. CDSS with the addition of MgSO₄ (\blacksquare), Na₂SO₄ (\bigcirc) and MgCl₂ (\blacktriangle). Fitting curve of Na₂SO₃ solution system (–).

The more SO_4^{2-} was added, the more CDSS could be produced. This could explain the effect of Na_2SO_4 reasonably and was in agreement with the corresponding titration results.

When Mg^{2+} was present in a sulfite system, the formation of another soluble sulfite species, neutral $MgSO_3^0$ ion pair, has been confirmed in the literatures [19,23]. Therefore, as $MgCl_2$ was added to the CaSO₃ slurry, the promotion of CDSS could be ascribed to the formation of $MgSO_3^0$. The effect of $MgCl_2$ on the CDSS could be described as:

$$\mathrm{SO}_3^{2-} + \mathrm{Mg}^{2+} \to \mathrm{Mg}\mathrm{SO}_3^{0} \tag{6}$$

For MgSO₄ additive, both SO₄^{2–} and Mg²⁺ could contribute to the promotion of CDSS based on Eqs. (4) and (6), therefore it became the most effective among the three additives employed. MgSO₄ has also been used as an additive in wet FGD process, and it was proved to be effective [19,20]. MgSO₃⁰ contributed to the improvement of SO₂ removal because it could act as an alkali in FGD system like SO₃^{2–}. Since the effects of additives on CDSS and NO₂ absorption in this study showed the similar trend, it could be presumed that MgSO₃⁰ might also act as an effective reducing agent in NO₂ absorption like SO₃^{2–}.

The relationship between the CDSS and the NO₂ absorption in CaSO₃ slurry system (symbols) is shown in Fig. 6, and the fitting curve representing the effect of SO_3^{2-} concentration on NO_2 absorption in Na₂SO₃ solution system (extracted from Fig. 3) is also presented for comparison. For CaSO₃ slurry system, it could be seen that the CDSS appeared to be the only factor that affected the absorption efficiency, regardless of the additives used. This result indicated that all the sulfite species constituting CDSS played the same role in NO₂ absorption. When CDSS was below $5 \text{ mmol } L^{-1}$. there was an obvious deviation between the slurry system and solution system, but the deviation became smaller gradually with the increase of CDSS. As the CDSS exceeded 5 mmol L⁻¹, a good agreement was obtained. Taking into account the effect of CaSO₃ content on NO₂ absorption as stated above, the deviation could be attributed to the effect of absorbent particles suspending in slurry. Under a low CDSS, the suspending particles played an important role and promoted the absorption obviously. As the CDSS increasing, its effect on NO₂ absorption enhanced gradually and then predominated over the impact of suspending particles. Since the experimental results for slurry system agreed well with the fitting curve as CDSS was above 5 mmol L⁻¹, it could be concluded that the CDSS acted like SO_3^{2-} in NO_2 absorption. And then it could be further confirmed that $MgSO_3^0$ was also an effective reducing absorbent and played the same role as SO_3^{2-} in NO_2 absorption

Fig. 7. The effect of MgSO₄ on the oxidation of CaSO₃. Experimental conditions: inlet concentration of NO₂ = 600 ppm (OR = 1); CaSO₃ content = 0.1 mol L⁻¹; pH value of liquid = 8.

through the reaction as follows:

$$2NO_2 + MgSO_3^{\ 0} + H_2O \rightarrow 2NO_2^{\ -} + SO_4^{\ 2-} + 2H^+ + Mg^{2+}$$
(7)

3.3. Effect of MgSO₄ on the oxidation of CaSO₃

It has been reported that the absorption of NO₂ into sulfite solution initiated a series of free radical reactions involving oxygen species [17], so sulfite would be oxidized by both NO₂ and O₂ in the process. Shen et al. [16] employed Na₂SO₃ solution as the NO₂ absorbent, and found that the oxidation rate of Na₂SO₃ increased with its own concentration and the rate of NO₂ absorption. It has already been proved that the addition of MgSO₄ could promote the CDSS of CaSO₃ slurry and enhanced the absorption of NO₂ significantly, so it should also accelerate the oxidation of CaSO₃. The effect of MgSO₄ on the CaSO₃ oxidation was investigated and the experimental results are shown in Fig. 7. It was indicated that the addition of MgSO₄ accelerated the CaSO₃ oxidation considerably as expected. The more MgSO₄ was added, the higher the oxidation rate of CaSO₃ was. The XRD results (Fig. 8) also confirmed this conclusion. From Fig. 8, there was no significant difference between the fresh sample and the post-absorbed slurry without MgSO₄, in which only CaSO₃ phase was detected. In contrast, the peaks attributed to CaSO₄·2H₂O and CaSO₄·0.67H₂O could be obviously observed in the sample with $0.6 \text{ mol } L^{-1} \text{ MgSO}_4$, which directly

Fig. 8. XRD patterns of CaSO₃ unoxidized and partially oxidized in absorption process: (a) unoxidized; (b) partially oxidized without additive; (c) partially oxidized with additive of $0.6 \text{ mol } \text{L}^{-1} \text{ MgSO}_4$: CaSO₃·0.5H₂O (*), CaSO₄·2H₂O (\diamond) and CaSO₄·0.67H₂O (\blacklozenge).

Fig. 9. The effect of MgSO₄ on the liquid phase composition. Experimental conditions: inlet concentration of NO₂ = 600 ppm (OR = 1); CaSO₃ content = 0.1 mol L^{-1} ; pH value of liquid = 8.

demonstrated the enhancement of CaSO₃ oxidation by the addition of MgSO₄. This would have a beneficial effect on forced oxidation of FGD slurry, resulting in the reduction of operation cost.

3.4. Effect of MgSO₄ on the liquid phase composition

When NO₂ was absorbed in CaSO₃ slurry with or without MgSO₄, the liquid phase products were determined by ion chromatography. It was found that nitrite NO₂⁻ and nitrate NO₃⁻ were the two main products of NO₂ absorption, which was in accordance with the indications of Eqs. (1) and (2). But the liquid phase composition varied obviously with the amount of MgSO₄ added. As shown in Fig. 9, the ratio of NO_2^- to $(NO_2^- + NO_3^-)$ increased significantly from 57% to 71% with the addition of MgSO₄ from 0 to $0.6 \text{ mol } L^{-1}$. According to the abovementioned equations (Eqs. (1) and (2)), the reaction of NO₂ with SO_3^{2-} produces only NO₂⁻ and the hydrolysis of NO₂ produces both NO_2^- and NO_3^- equimolarly. Thus the higher ratio of NO₂⁻ to the total NO₂ absorption products $[NO_2^{-}/(NO_2^{-} + NO_3^{-})]$ in the liquid phase indicated more contribution of sulfite species to NO_2 absorption (Eqs. (1) and (7)). This result further confirmed the role of CDSS in NO₂ absorption when MgSO₄ was used as the additive.

4. Conclusions

The performances of CaSO₃ slurry in NO₂ absorption in a laboratory-scale packed column were investigated. It was found that NO₂ absorption efficiency above 70% could be obtained as the CaSO₃ content exceeded 0.1 mol L⁻¹. MgSO₄ was employed as an additive to promote the capacity of dissolved sulfite species (CDSS) and absorption efficiency, which appeared to be more effective than the other two additives, Na₂SO₄ and MgCl₂. When 0.6 mol L⁻¹ MgSO₄ was added, the CDSS was promoted considerably from 0.49 to 9.69 mmol L⁻¹, and the efficiency increased significantly from 70.8% to 86.0%. Both SO₄^{2–} and Mg²⁺ contributed to the CDSS promotion. And a neutral MgSO₃⁰ ion pair was formed in the process, which was confirmed to play the same role in the NO₂ absorption as dissociated SO₃^{2–}. At the same time, the addition of MgSO₄ would accelerate the CaSO₃ oxidation significantly and influence

the liquid phase composition. The experimental results provide a possibility for achieving desulfurization and denitrification by wet FGD process simultaneously.

Acknowledgements

This project was financially supported by the National High-Tech Research and Development Program (863) of China (2007AA061701) and the New Century 151 Talent Project of Zhejiang Province.

References

- C.D. Cooper, F.C. Alley, Air Pollution Control: A Design Approach, third ed., Waveland Press Inc., USA, 2002.
- [2] Y.S. Mok, Absorption-reduction technique assistant by ozone injection and sodium sulfite for NOx removal from exhaust gas, Chem. Eng. J. 118 (2006) 63–67.
- [3] Z.B. Wu, H.Q. Wang, Y. Liu, B.Q. Jiang, Z.Y. Sheng, Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides, Chem. Eng. J. 144 (2008) 221–226.
- [4] S. Barman, L. Philip, Integrated system for the treatment of oxides of nitrogen from flue gases, Environ. Sci. Technol. 40 (2006) 1035–1041.
- [5] M.M. Collins, Pilot scale study for control of industrial boiler: nitrogen oxide emissions using hydrogen peroxide treatment coupled with wet scrubbing—system design, Ph.D. Dissertation, The University of Central Florida, Orlando, FL, 1998.
- [6] J.M. Haywood, C.D. Cooper, The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases, J. Air Waste Manage. Assoc. 48 (1998) 238–246.
- [7] H.F. Hartmann, G.M. Brown, B. Kean, Use of chlorine dioxide to reduce vapor phase gum in town gas, J. Inst. Fuel 39 (1966) 325–335.
- [8] M.M. Yung, E.M. Holmgreen, U.S. Ozkan, Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide, J. Catal. 247 (2007) 356–367.
- [9] Q. Wang, S.Y. Park, J.S. Choi, J.S. Chung, Co/K_xTi₂O₅ catalysts prepared by ion exchange method for NO oxidation to NO₂, Appl. Catal. B 79 (2008) 101–107.
- [10] H.Q. Wang, Z.B. Wu, W.R. Zhao, B.H. Guan, Photocatalytic oxidation of nitrogen oxides using TiO₂ loading on woven glass fabric, Chemosphere 66 (2007) 185–190.
- [11] Z.Y. Sheng, Z.B. Wu, Y. Liu, H.Q. Wang, Gas-phase photocatalytic oxidation of NO over palladium modified TiO₂ catalysts, Catal. Commun. 9 (2008) 1941–1944.
- [12] Y. Kameoka, R.L. Pigford, Absorption of nitrogen dioxide into water, sulfuric acid, sodium hydroxide, and alkaline sodium sulfite aqueous solutions, Ind. Eng. Chem. Fundam. 16 (1977) 163–169.
- [13] H. Takeuchi, M. Ando, N. Kizawa, Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions, Ind. Eng. Chem. Process. Des. Dev. 16 (1977) 303–308.
- [14] C.L. Clifton, N. Altstein, R.E. Huie, Rate constant for the reaction of NO_2 with sulfur(IV) over the pH range 5.3–13, Environ. Sci. Technol. 22 (1988) 586–589.
- [15] L.K. Chen, J.W. Lin, C.L. Yang, Absorption of NO₂ in a packed tower with Na₂SO₃ aqueous solution, Environ. Prog. 21 (2002) 225–230.
- [16] C.H. Shen, G.T. Rochelle, Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite, Environ. Sci. Technol. 32 (1998) 1994–2003.
- [17] D. Littlejohn, Y. Wang, S.G. Chang, Oxidation of aqueous sulfite ion by nitrogen dioxide, Environ. Sci. Technol. 27 (1993) 2162–2167.
- [18] H. Takeuchi, K. Takahashi, N. Kizawa, Absorption of nitrogen dioxide in sodium sulfite solution from air as a diluent, Ind. Eng. Chem. Process. Des. Dev. 16 (1977) 486–490.
- [19] W.A. Cronkright, W.J. Leddy, Improving mass transfer characteristics of limestone slurries by use of magnesium sulfate, Environ. Sci. Technol. 10 (1976) 569–572.
- [20] G.T. Rochelle, C.J. King, The effect of additives on mass transfer in CaCO₃ or CaO slurry scrubbing of SO₂ from waste gases, Ind. Eng. Chem. Fundam. 16 (1977) 67–75.
- [21] W.P. Bronikowska, T. Bronikowski, M. Ulejczyk, Mechanics and kinetics of autoxidation of calcium sulfite slurries, Environ. Sci. Technol. 26 (1992) 1976–1981.
- [22] S. Uchida, K. Koide, M. Shindo, Gas absorption with fast reaction into a slurry containing fine particles, Chem. Eng. Sci. 30 (1975) 644–646.
- [23] R.N. Roy, J.Z. Zhang, F.J. Millero, The ionization of sulfurous acid in Na-Mg-Cl solutions at 25 °C, J. Solution Chem. 20 (1991) 361-373.